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Free radicals / oxidative stress

Inflammation
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FIBRE PATHOGENICITY PARADIGM

The most robust SAR we have in particle toxicology

=*The WHO definition of a fibre is a particle which is >5pm in length and has a
diameter <3pm (making it respirable) and an aspect ratio of greater than 3:1
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AERODYNAMICS OF LONG FIBRES

ALL OF THE PARTICLES BELOW HAVE AN AERODYNAMIC
DIAMETER OF 2 pum: assumes unit density; data courtesy of Dr G. Oberdorster
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PANEL OF FIBRES AND MWCNT




PLEURAL INFLAMMATION

ONLY LONG CNT ARE INFLAMMOGENIC IN PLEURAL SPACE OF
MICE

Dose response
0.1pg-5ug/mouse dose

Total
Granulocytes (10%)




PERSISTENT INFLAMMATION IN PLEURAL SPACE BY LONG

CNT
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SIMILAR RESPONSES IN PLEURAL AND PERITONEAL
CAVITIES TO INSTILLED CNT PANEL
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FURTHER VERIFICATION

:

;

Total Granulocytes (10%)
b
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Even though a proportion of all deposited particles transit through the pleura these data
suggest that, for compact particies, no retention (or inflammation) would occur as rapid

clearance out through the stomata Is the norm

The elutriating effect of the alrways ensures that only very small compact particles ever
reach the pleura and they easlly negotiate the stomata




MECHANISMS FOR MWCNT TOXICITY

Farmicles and short fibres pass out thowgh the siomata and
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BIOPERSISTENCE OF MAN MADE VITREOUS

FIBRES

e 2 Man Made Vitreous Fibres
e MMVF21 - Traditional Stone Wool
e MMVF34 — HT Stone Wool

MMVF21 MMVF34 Dissolution rate (ngem~*h~')
Fibre pH7.5 pH4.5

% Si02 459 18.9
% Al203 13.8 23.2 MMVF2] 23 (16-30) 59 (41-77)
% TiO2 30 21 MMVF34 59 (41-11) 620 (434-806)
% FeO 6.2 6.7
% CaO 17.0 150
% MgO 9.5 9.6 Fibre Dissolution MMVF21/MMVF34 in
% Na20 2.5 1.9 )
% K20 13 0.8 different pH.
Other oxides 0.4 0.9

Fibre Composition: MMVF21/MMVF34



RESULTS FROM SHORT-TERM INHALATION
STUDIES
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. A o WHO >20uum Grav. conc.
Short term inhalation studies — Rate of removal of Study (Fjem) (Flem®)  (mg/m®)
i MMVF21—5d 467 147 58
Long fibres (l >20 um) MMVF34—5 d§§§ 370 161 60
MM VF34—3 months 282 84 31
: MMVF34—12 months 264 82 31
Mean aerosol concentrations MM VF34—18 months 288 86 31
MMVF2]l—study mean 150 74 16
for MMVF21 and MMVF34 MMVF2Il—study mean 243 114 30




PULMONARY CHANGES AFTER DIFFERENT PERIODS OF

EXPOSURE

Tahle B Lung burdens per mg dry lung and palmenary chingss (mesn Wugner scorss) aler differsnt periods of expozine
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THE PARADIGM (OF RISK MIAT \Y/

Fundamental to the Strategy for Occupational Health and Safety with
Nanotechnology is the Risk Management Paradigm
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* Control limit for exposure to Engineered Nanomaterials is
essential for Risk Assessment

* Nanomaterials have high surface to volume ratio and this will lead
to low mass based control limit

e e.g 7 ug/m3for carbon nanotube

e Can the workplace exposure be controlled at such low (mass
based) level of exposure?

 |f this is not feasible then we must look forward to a new
generation of engineered nanomaterials that are:

* SAFE BY DESIGN

* i.e. We must understand which physico-chemical characteristics
of nanomaterials can drive the toxicity and design new
industrially useful nanomaterials without these features



